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Introduction


High-level radioactive waste (HLW) from spent nuclear fuel reprocessing is a potential source of a severe radioactive pollution of the environment. An effective method of HLW isolation from the biosphere is disposal of the solidified HLW in an underground mined repository at a depth of several hundreds of meters (Krauskopf, 1988). Solidification of HLW on industrial scale is carried out by means of incorporation of waste components in glass of different composition (Gin et al., 2009). Calcined HLW is added to the glass melt which is then mixed thoroughly and cast into steel canisters. A borehole repository represents a borehole or array of boreholes drilled to a depth of about 5000 m. The welded canisters should be disposed one above another in the lower 2–3 km of the boreholes. The upper part of the boreholes above the canisters will be sealed with bentonite and cement (Fig.1) (Arnold et al., 2011).

The glass matrix, which immobilizes HLW components, canisters and backfill between the canisters and the borehole walls compose a system of engineered barriers which prevent a release of radionuclides from HLW into groundwater in enclosing rocks. The rock massif between the loaded parts of the boreholes and the earth surface is a natural barrier for transport of radionuclides by groundwater from the repository to the biosphere. 

The main mechanism of the radionuclides migration is their transport by groundwater. The disposal of HLW in a repository is safe if concentration of radionuclides in the groundwater decreases due to radioactive decay up to an allowable level during their migration through the engineered and natural barriers. Radionuclides migration can last thousands of years. Therefore, the most substantiated method for prediction of radionuclides migration from the repository to the biosphere is computer simulation of this process. 

Borehole repositories were considered long ago as an effective and safe method of underground disposal of HLW (O’Brien et al., 1983; Malkovsky, Pek, 1993). Problems concerning technical aspects of borehole repositories development are analyzed exhaustively in (Arnold et al., 2011). Safety assessment of such repositories calls for development of corresponding models of radionuclides migration from the disposed HLW to the ground surface and biosphere.
[image: image1.jpg]
Fig.1. Borehole repository of HLW.

The groundwater flow consists of two components: regional stream (caused by different levels of catchment area and discharge zone of the groundwater) and thermal convection induced by heat generation in the disposed HLW. Low velocity of the regional flow is one of the main requirements to selection of an appropriate repository site (Krall et al., 2020). Therefore, buoyancy forces caused by difference in temperatures are main driving forces of groundwater flow in enclosing rocks of the borehole repository of HLW. Transport of radionuclides from the borehole repository by thermal convection of the groundwater caused by heat generation in the disposed HLW was considered in (Malkovsky, Pek, 1993) for a single borehole and later in (Malkovsky et al., 1995) taking into account interference of thermal convection processes at neighboring boreholes. However these models suffered from some disadvantages. At first, only the natural barrier of the repository was considered, and engineered barriers were not taken into account. At second, an ideal HLW was considered with an exponential decrease of heat generation rate with time. At third, groundwater flow, as well as heat and mass transfer processes in underground medium were considered in Boussinesq’s approximation, i.e. all thermophysical properties of rock and water were assumed to be independent on temperature except for water density in the expression for gravity force. At fourth, accuracy of modeling was acceptable only for a limited difference between the highest and the lowest concentrations of radionuclides in the modeling domain. The objective of this study is development of a more rigorous model for simulation of radionuclides migration from the borehole repository and analysis of appropriateness of these repositories for HLW disposal. From the viewpoint of efficient use of the allotment area, it is worthwhile to dispose HLW not in a single borehole but in an array of boreholes. This can lead to an interaction of thermal convection properties at the boreholes. As a result, characteristics of radionuclides migration from internal and border boreholes can differ from each other. That is why our consideration will be based on an example of a rectangular array of nine regularly spaced boreholes. 
1. Mathematical model of radionuclides migration
1.1. Driving forces of thermal convection

Thermal convection of groundwater at repository site is caused by heat generation as a result of radioactive decay in HLW. Therefore, modeling of the flow calls first of all for determination of heat generation rate. Solidified HLW in the repository includes both relatively short lived fission radionuclides and long-lived actinides. 
Fission radionuclides are represented mainly by 137Cs and 90Sr (initial fractions by weight of these radionuclides are designated as 
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). Half-life of 137Cs is 30.2 years, (-decay of 137Cs leads to its conversion (direct or with intermediate (-decay) into stable 137Ba. 90Sr undergoes β-decay (with half-value period of 28.8 years) into 90Y. The latter in turn undergoes β-decay with half-life of 64 hours into 90Zr which is stable. Hence from the viewpoint of heat generation modeling, radioactive decay of the fission radionuclides can be considered as single-stage processes without formation of heat-generating daughter isotopes.
Our future consideration is based on an example of Russian HLW where the actinides are represented predominantly by two isotopes: 241Am and 244Cm. Let us designate fraction by weight of actinides in HLW as 
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. Fractions by weight of these isotopes in the mass of the actinides are respectively 
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. Each of these radionuclides converts in the decay process to a daughter isotope which, in its turn, transforms to a next daughter isotope, and so on. Thus, each of the two actinides is a source of a transmutations chain. We designate the source isotope as the first radionuclide in the chain, the first daughter isotope is the second one, and so on. Density of the first radionuclide in the i-th chain (
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 is density of the vitrified HLW. Densities of the daughter radionuclides in the chain are zero at the initial moment. We designate density of the n-th radionuclide in the i-th chain as 
[image: image10.wmf])

(

,

t

i

n

r

 
[image: image11.wmf],...)

3

,

2

,

1

(

=

n

where t is time. Then
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where 
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Half-life of the n-th radionuclide in the i-th chain is 
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Densities of the daughter isotopes satisfy the system of ordinary differential equations
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where 
[image: image18.wmf]i

n

A

,

 is atomic weight of the n-th radionuclide in the i-th chain.

The next step is determination of heat generation rate which corresponds to the changes of radionuclides density. Let us designate heat generation rate per unit mass of the n-th radionuclide in the i-th chain as 
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 and total heat generation rate of unit volume of HLW per unit time as 
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Current (at the time moment t) value of 
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 can be determined by the formula
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where 
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 is heat generation rate of unit volume of HLW per unit time due to decay of fission radionuclides.

Solution of the Cauchy problem (2)–(1) and estimations of 
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 are presented in Appendix. A characteristic dependence of 
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 on time is presented in Fig.2.
1.2. Groundwater flow 

The repository consists of 9 regularly spaced boreholes. Let us introduce Cartesian coordinates so that axes 
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 are horizontal, and z axis is directed upward along the axis of the central borehole so that position of the ground surface corresponds to z = 0 (Fig.1). Groundwater flow and coupled processes of heat and mass transfer are considered in the modeling domain: 
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 are selected so that influence of the repository on pressure and temperature of groundwater at 
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Fig.2 Time-dependent heat generation rate of vitrified HLW
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We assume here that groundwater flow satisfies Darcy’s law, rock permeability is homogeneous and isotropic, rock porosity is homogeneous. Components of seepage velocities can be written in this case as
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where 
[image: image42.wmf]z

y

x

v

v

v

,

,

 are components of the seepage velocity in the x, y and z direction, respectively; 
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 is groundwater pressure; 
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 is rock permeability; 
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 is dynamic viscosity of the groundwater; 
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 is groundwater density; 
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 is acceleration due to gravity. 
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 depend on pressure and temperature.


We assume that the considered process is very slow, so that the continuity equation can be written in steady state form
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Substitution of the expressions (4) into Eq. (5) gives
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where 
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 is kinematic viscosity.

Local pressure can be represented as a sum of non-perturbed hydrostatic pressure 
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 caused by heat generation in HLW. Values of 
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 is local value of geothermal gradient; 
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Then equations (4) and (6) can be rewritten as
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Reasons for use of 
[image: image63.wmf]P

 instead of 
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 ensue from necessity of numerical modeling of groundwater flow. It should be taken into account that temperatures in the repository should not exceed values of the order of 100–200oC. According to repository projects, HLW should be disposed at depths more than 2 km. Therefore, 
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. Therefore, an acceptable accuracy of numerical solution of Eq (6) in 
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 can be too rough for calculation of 
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. As it follows from Eq (8), this can lead to substantial errors in calculation of seepage velocities.

Boundary conditions for Eq (7) can be written as
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1.3. Heat transfer and radionuclides migration.

Temperature field satisfies the equation of transient convective heat transfer
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where 
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We considered here a case of homogeneous 
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. However numerical methods, which we used in this study, permit to integrate Eq (10) at arbitrary spatial distribution of these parameters. 

Heat generation is caused by HLW which are disposed in the regularly spaced boreholes. Hence 
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where 
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Boundary conditions for Eq (10) can be written as


[image: image90.wmf].

,

;

,

0

;

,

;

,

lim

lim

lim

bas

a

bas

bas

T

T

z

z

T

T

z

T

T

y

y

T

T

x

x

=

-

=

=

=

=

±

=

=

±

=

                                        (12)


Initial condition takes the form
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1.4. Engineered barriers
The engineered barriers are of different importance for reliability of HLW isolation. According to some estimates any breach of canisters containment will be absent for at least 1000 years (Diomidis, Johnson, 2014). However, the life time of the canisters can be less as a result of self-accelerated corrosion (Guo et al., 2019). A shear stress in the enclosing rocks due to a difficult-to-predictable growth of tectonic activity can lead to crippling of the canisters and the buffer (Kochkin, Petrov, 2015). Therefore, conservative forecasts of radionuclides migration should take into account only the glass matrix among the engineered barriers of the repository. 
Vitrification of HLW on industrial scale in Russia was carried out with use of Na-Al-P-glass (Ojovan, Lee, 2011; Laverov et al., 2016). Extraction of radionuclides from the vitrified HLW is caused by leaching of the glass matrix with incorporated radionuclides after crippling or corrosion of the canisters. Glass leaching rate depends on time and temperature (Berger et al., 1987; Frugier et al., 2008; Gonga et al., 2018). Experimental studies of these dependences for Na-Al-P-glass are presented in (Zotov et al., 1996; Malkovsky et al., 2018). Zotov et al. (1996) considered time-average leaching rate on temperature. These data can be satisfactorily approximated by Arrhenius formula 
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where 
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 is mass of the Na-Al-P-glass which is leached from its unit surface per unit time, kg/m2s; 
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Processing of the data from (Zotov et al., 1996) showed that the experimental results are in a satisfactory agreement with the formula (14) at following values of the approximation parameters: 
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Experiments on temporal changes of 
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 were carried in (Malkovsky et al., 2018) at 
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Since (14) is valid at any time, dependence of 
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Mass of the radionuclide which is leached from unit length of the borehole per unit time is 
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1.5. Mass transfer


If the dispersion tensor is expressed in its principal directions, the governing equation of radionuclides migration in approximation of advection-dispersion model takes the form (deMarsily, 1986) 
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where 
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 is fraction by weight of the considered radionuclide in the groundwater;
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Boundary conditions for (16) can be written as
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Initial condition takes the form
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An objective of many general purpose simulators for modeling of contaminant migration is solution of boundary problems like (16)–(18). As applied to repository safety assessment, this modeling permits to determine such parameters of the repository that concentration of any radionuclide in the groundwater at the earth surface does not exceed its maximum allowable value 
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. However this problem can be solved with an acceptable accuracy through numerical solution of the boundary problem (16)–(18) only in a case that concentration of the radionuclide in the vicinity of the radioactive pollution source differs from 
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 no more than by 2–3 orders of magnitude. The reason is as follows. Any numerical calculations are inevitably associated with introduction of an error. Level of the error depends on maximum value of 
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 in the whole modeling domain 
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. As it follows from data on leaching of Na-Al-P-glasses, concentration of radionuclides in the repository (
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) can exceed 
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 by 5–6 orders of magnitude. Therefore, an error in calculation of radionuclide concentration at the earth surface is of the order of 103(
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. Since safe parameters are determined from the condition that 
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 at the earth surface, accuracy of such modeling is insufficient for repository safety assessment. 

Let us introduce a variable 
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Eq (16) can be rewritten in the new unknown function 
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 in the form
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where 
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Boundary conditions for (19) are rewritten as
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Initial condition (18) takes the form
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2. Methods of numerical solution


All boundary problems, which govern flow, heat and mass transfer, are symmetric about two vertical plates: 
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 and 
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 (Fig. 1). That is why the problem was considered only in the south-eastern quarter of the modeling domain. Distributions of velocity, temperature and concentration in other parts of the domain can be obtained from mirror symmetry of the problem about two indicated plates.

Solution of the problem was obtained by finite differences methods. As is follows from (15), HLW leaching rate depends substantially on temperature. Therefore, temperatures in the loaded parts of the boreholes should be determined with acceptable accuracy. Since the most substantial spatial changes of temperature take place close to heat sources, the grid should be sufficiently dense at the positions of the boreholes. However 
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. Therefore, if we use so dense grid in other parts of the domain this will lead to an unacceptable growth of nodes number and calculation time. Hence the grid should be not uniform in 
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 and 
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: more dense at the boreholes and loose in the other parts of the modeling domain. However the grid can be uniform in 
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Boundary problems like (7), (9) are often solved by the method of successful overrelaxation. The method is to some extent close to integration of the modified equation
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where 
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 is a virtual time. Processes, which are governed by parabolic equations at steady state boundary conditions of the first kind, tend to a steady state. Then the derivative of 
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 with respect to 
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 tends to zero, and the “steady state” solution satisfies the initial elliptic equation.  

The method of successful overrelaxation is explicit. Therefore, its stability calls for a condition like inequality of Courant-Friedrichs-Lewy (Roache, 1976). As a result, step of integration in 
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 should correspond to least internodal distances along 
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 and 
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. According to requirements on accuracy of heat transfer problem solution these minimal distances should be no more than 
[image: image157.wmf]c

r

. Since 
[image: image158.wmf]1

/

,

/

lim

lim

>>

r

y

r

x

c

, distribution of 
[image: image159.wmf]P

 in the whole domain becomes steady state only after a huge number of integration steps with respect to 
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. However partial derivatives of 
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 with respect to 
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 can be determined explicitly in integration with respect to 
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 because distances between the nodes along 
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 can be comparable with the dimensions of the domain. From these considerations, we modified the method of successful overrelaxation as
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where 
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 is number of integration step; 
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 is step of integration with respect to the virtual time. The process continues until 
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Equations (22) at each fixed 
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 form with boundary conditions a set of linear equations in unknowns 
[image: image170.wmf]{

}

y

x

s

k

j

i

N

j

N

i

P

,...,

1

;

,...,

1

,

1

,

,

=

=

+

. The sets of equations at each 
[image: image171.wmf]k

 were solved by method of biconjugate gradients (Hageman, Young, 1981). It is worth mentioning that semi-implicit determination of derivatives of 
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 with consequent application of method of biconjugate gradients to the whole array of 
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 was ineffective because of very large total number of grid nodes.

Eq. (10) was integrated by 3-D method of alternating directions in the form of Douglas (Roache, 1976). Convective terms in (10) were approximated by upwind differencing.

Thermophysical properties of the groundwater at different pressures and temperatures were determined by approximating expressions from (Rivkin et al.,1978).
3. Input data

Input data for the program borehole should be presented in a file entitled initdat
All data should be presented in ASCII codes. Data should be written in several records. Each record should start from a new data line as it is indicated below. Values of input parameters should be divided from each other by spacebar (or several spacebars). If some parameter is omitted in the input data file, the program stops.
File initdat (parameter dimensions are indicated in brackets)
	Number of data line
	Parameters
	Comments

	1
	
[image: image175.wmf]c

r

(m)  
[image: image176.wmf]b

z

(m)  
[image: image177.wmf]b

u

z

z

-

(m)
	

	2
	
[image: image178.wmf]x

d

(m)  
[image: image179.wmf]lim

x

(m)  
[image: image180.wmf]x

N

(dimensionless)
	
[image: image181.wmf]x

d

 is a distance between neighboring boreholes in x-direction (see Fig.1), 
[image: image182.wmf]x

N

 is number of nodes along the x-axis . 
[image: image183.wmf]101

£

x

N



	3
	
[image: image184.wmf]y

d

(m)  
[image: image185.wmf]lim

y

(m)  
[image: image186.wmf]y

N

(dimensionless)
	
[image: image187.wmf]y

d

 is a distance between neighboring boreholes in y-direction (see Fig.1), 
[image: image188.wmf]y

N

 is number of nodes along the y-axis . 
[image: image189.wmf]101

£

y

N



	4
	
[image: image190.wmf]lim

z

(m)  
[image: image191.wmf]z

N


	
[image: image192.wmf]41

£

z

N



	5
	
[image: image193.wmf]a

T

(K)  
[image: image194.wmf]G

(K/m)
	

	6
	
[image: image195.wmf]k

(m2)  
[image: image196.wmf]j

(dimensionless)  
[image: image197.wmf]l

(W/(m(K) )  
[image: image198.wmf]r

r

(kg/m3)  
[image: image199.wmf]r

c

 (J/(kg(K) )
	

	7
	
[image: image200.wmf]A

g

(dimensionless)  
[image: image201.wmf]E

g

(dimensionless)  
[image: image202.wmf]matr

r

(kg/m3)  
[image: image203.wmf]stor

t

(years)  
[image: image204.wmf]L

d

(dimensionless)
	
[image: image205.wmf]E

g

 is fraction by weight of 241Am or 244Cm in the mass of the actinides. If we examine migration of 241Am, 
[image: image206.wmf]E

=1, and 
[image: image207.wmf]E

g

=
[image: image208.wmf]1

g

. If we examine migration of 244Cm, 
[image: image209.wmf]E

=2, and 
[image: image210.wmf]E

g

= 
[image: image211.wmf]2

g

. 
[image: image212.wmf]stor

t

 is time of temporary storage of the vitrified HLW before its final disposal in the boreholes; 
[image: image213.wmf]L

d

 is loading density, i.e. length of all canisters in a borehole per total length of the loaded part of the borehole

	8
	
[image: image214.wmf]a

(m)
	

	9
	
[image: image215.wmf]d

K

(m3/kg)  
[image: image216.wmf]m

D

(m2/s)
	If a substantial influence of colloidal form of transport is expected, it is recommended to specify 
[image: image217.wmf]d

K

 = 0 for conservative estimations.

	10
	
[image: image218.wmf]E

 (dimensionless)  
[image: image219.wmf]lim

C

(dimensionless)
	
[image: image220.wmf]E

 is number of the radionuclide which migration is considered (
[image: image221.wmf]E

=1 for 241Am and 
[image: image222.wmf]E

=2 for 244Cm, see the comment to the data line 7)

	11
	
[image: image223.wmf]lim

s

(dimensionless)  
[image: image224.wmf]e

(dimensionless)
	
[image: image225.wmf]lim

s

is limit number of the integration steps s in formula (22); it is recommended from calculation practice that 
[image: image226.wmf]lim

s

should not exceed 103 . 
[image: image227.wmf]e

 is accuracy of steady-state condition for the integration procedure (22); it is recommended to specify 
[image: image228.wmf]e

=10–2 .

	12
	
[image: image229.wmf]out

N

(dimensionless)  
[image: image230.wmf]1

t

(years) … 
[image: image231.wmf]out

N

t

(years)
	
[image: image232.wmf]out

N

 is a number of time points for output of files for graphic representation of spatial distributions of temperature and radionuclide concentrations, maximum allowable 
[image: image233.wmf]out

N

 is 9; 
[image: image234.wmf]out

N

t

t

,...,

1

 are these time points.


Parameters 
[image: image235.wmf]x

N

, 
[image: image236.wmf]y

N

, 
[image: image237.wmf]z

N

, 
[image: image238.wmf]E

, 
[image: image239.wmf]lim

s

, 
[image: image240.wmf]out

N

 are integer and should be written without decimal dot in the file initdat .  Other parameters should be written with decimal dots and in exponential form (if necessary). For example, 
[image: image241.wmf]k

=2(10–16 m2. This parameter should be written in the file initdat as 2.e-16. Let the parameter 
[image: image242.wmf]1

t

 be 2 years. It should be written in the file initdat as 2. (i.e. with obligatory decimal dot
Example of initdat

0.25
3.e3
1.e3

500.
1500.
41

400.
1500.
41

5000.
41

20.
0.025

5.e-15
0.01
1.
2500.
1.e3

0.05
0.01
2600.
50.
1.

100.

0.
1.e-11

1
0.76e-12

500
0.01

6
10. 100. 200. 500. 1000. 2000.

4. Output

The program generates following files of calculation result output  

1) temper.dat

Data in the file consists of 3 columns:
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These data characterize dynamics of temperature in the center of the block of vitrified HLW in the middle of the loaded part of the central borehole of the repository. Plot of time dependent temperature in the center of HLW block on the basis of the data from the file temper.dat is shown in Fig.3
2) 
[image: image244.wmf]out
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 files: tprofile1.dat, …, tprofile
[image: image245.wmf]out
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.dat
Each file tprofilei.dat (
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These files characterize how temperature depends on 
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 at 
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 and 
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 (i.e. at the depth which corresponds to the middle depth of the loaded parts of the boreholes). 
[image: image252.jpg]
Fig. 3. Time-dependent temperature of HLW at a depth which corresponds to the middle of the loaded parts of the boreholes, i.e. at 
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. The unperturbed temperature at this depth is equal to 82oC. 
[image: image254.wmf]c
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 = 0.25 m.

Next 4 types of output files serve for graphic representation of modeling results with use of the application package SURFER (GoldenSoftware, Inc.)
3) 
[image: image255.wmf]out
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 files: veloc1.dat, …, veloc
[image: image256.wmf]out
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.dat
File veloci.dat (
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These files are prepared in a special format for use of the application package SURFER for visualization of areal distributions of temperature at the middle depth of loaded parts of the boreholes, i.e. at 
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These files are prepared in a special format for use of the application package SURFER for visualization of 
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These files are prepared in a special format for use of the application package SURFER for visualization of areal distributions of 
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It follows from the first equation of the set (2) that
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Then the second equation of the set (2) can be rewritten as 
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Let us seek a solution in the form 

[image: image310.wmf](

)

t

t

f

i

i

i

2

2

2

exp

)

(

c

r

-

=

.


Substitution of this expression into (A.1) gives 
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We obtain from integration of Eq. (A.2) taking into account boundary conditions (1) that 
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Let us substitute the expression of 
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Much as it was done before, we will seek a solution in the form
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[image: image317.wmf](

)

[

]

(

)

[

]

{

}

t

t

dt

df

i

i

i

i

i

i

i

i

2

3

1

3

1

2

2

3

exp

exp

c

c

c

c

c

c

x

-

-

-

-

=


where 
[image: image318.wmf]i

i

i

i

i

A

A

2

3

3

1

2

/

c

x

x

=

.


From this it follows that
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where 
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It follows from the initial conditions (1) that
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Therefore,
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The next step is determination of heat generation rate which corresponds to the changes of radionuclides density. With this aim in view we have to determine values of 
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 is Avogadro constant. It follows that =5.06(104 W/kg.

233U converts to 229Th as a result of α-decay, half-life of 233U is 1.59(105 years. This is much more than regulatory value of HLW isolation time. Therefore it is acceptable to limit the consideration of the chain to the first 3 radionuclides. 


Let us consider the transmutation chain of 244Cm. As a result of (-decay, 244Cm converts to 240Pu: 244Cm(240Pu+4(. 
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